MOJAVE PROJECT EXPLORATION DRILLING

PLAN OF OPERATIONS MODIFICATION

PLAN OF OPERATIONS CACA-056495

FEBRUARY | 2021

SUBMITTED TO:
United States Department of the Interior
Bureau of Land Management—Ridgecrest Field Office
300 S. Richmond Rd., Ridgecrest, CA 93555

PREPARED BY:
Mojave Precious Metals, Inc.
Local Office: 120 S Main St. Unit 11, Lone Pine, CA 93545
Corporate Office: 1020-800 Pender Street W, Vancouver, BC V6C2V6

Benchmark Resources
2515 E. Bidwell St, Folsom, CA 95630
Cover photograph: Mojave Precious Metals, Inc. drills at the Dragonfly Target in October 2020 within the footprint of a prior exploration roadway. This initial program capitalized on an existing permit but reduced the number of drill sites and surface disturbance at each location.
SUMMARY

IDENTIFICATION

Name: Mojave Project Exploration Drilling
Plan of Operation Number: CACA-056495
California Mine
Identification Number: Not assigned

CONTACT INFORMATION

Operator: Mojave Precious Metals, Inc.
Corporate Address: 1020-800 Pender Street W
City, State, Zip Code: Vancouver, BC V6C2V6
Telephone Number: (604) 331-5090
Contact Person: Stephen Swatton, CEO
Email: Steve@mojavepreciousmetals.com

Local Address: Mojave Precious Metals, Inc.
City, State, Zip Code: 120 S Main St. Unit 11
City, State, Zip Code: Lone Pine, California 93545
Telephone Number: (760) 614-5605

Owners of Claims: Steven Van Ert
Address: P.O. Box 3785
City, State, Zip Code: Chatsworth, CA 91313
Noel Cousins
Address: P.O. Box 37061
City, State, Zip Code: Tucson, AZ 85740

LOCATION

Inyo County Assessor’s Parcel Numbers (Mojave Property):
0273200100BLM, 03111000BLM

Section, Township and Range (Mojave Property):
Sections 4, 9 and 10 Township 17S, Range 39E, Mt. Diablo B&M

Latitude and Longitude (at entrance to site):
Latitude: 36° 29’ 01” N
Longitude: 117° 43’ 17” W

Directions to the site:
The exploration site is accessed from Saline Valley Road, north of Highway 190. BLM-managed off-road vehicle route S2978 is used to access the Project area from White Mountain Talc Road.

Exploration Project claims and acreage:
Exploration project site is located within a block of 121 claims, encompassing 2,424± acres

DOCUMENTS AND APPROVALS

Decision: CACA-056495 3809 (CAD05000) (5/16/2018)
Approved Plan of Operations Summary:

BLM Preferred Helicopter Access Alternative. Exploration using helicopter-portable drilling equipment (drill rig and excavator). Seven drill pads, water storage tanks, hoses to transport water from tank to drilling pad(s), pumps, generator. Estimated surface disturbance: 0.2 acres.

Proposed Plan of Operations Modification Summary:

Drilling using conventional wheeled drilling rigs. Access to drill sites via reconstruction of previously graded and reclaimed roads, and by overland travel. Construction of exploration drill pads and sumps within road construction footprint. Access and drill at up to 30 sites with approximately 4 drill holes per site (120 total drill holes) averaging 300 meters (984 feet) below ground surface. Other incidental equipment and exploration activities. Estimated surface disturbance: 12.2 acres.
TABLE OF CONTENTS

1. **INTRODUCTION** .. 1
 1.1 Exploration Right and Responsibility ... 1
 1.2 Location and Access... 2
 1.3 Operator and Claims Information ... 2
 1.3.1 Operator Information ... 2
 1.3.2 Claim Owners and Claim Numbers (Exploration Site) 3
2. **ENVIRONMENTAL SETTING** ... 3
 2.1 Reclaimed Exploration Roadway and Drilling Sites .. 3
 2.2 Topography.. 3
 2.3 Vegetation.. 3
 2.4 Climate .. 4
3. **SITE BACKGROUND AND LAND USE MANAGEMENT** ... 4
 3.1 Background... 4
 3.2 Land Use Management ... 5
 3.3 BLM and County Land Use Approvals .. 5
 3.4 Description of Operations .. 6
 3.4.1 Surface Disturbance ... 6
 3.4.2 Overland Access ... 6
 3.4.3 Road Construction and Maintenance ... 7
 3.4.4 Growth Media Stockpile ... 7
 3.4.5 Drill Sites and Drilling .. 7
 3.4.6 Equipment .. 8
 3.4.7 Schedule .. 8
 3.4.8 Personnel ... 9
 3.4.9 Fuel and Reagent Handling and Storage .. 9
 3.4.10 Stormwater and Erosion Control ... 10
 3.4.11 Water Supply and Use ... 10
 3.4.12 Occupancy .. 10
4. **Operating Plans** .. 11
 4.1 Quality Assurance ... 11
 4.2 Monitoring Plan .. 11
 4.3 Interim Management ... 11
4. **Applicant-Committed Environmental Protection Measures** 12
 4.1 Air Quality ... 12
 4.2 Water Quality ... 12
 4.3 Spill Contingency Plan .. 12
 4.4 Soils and Erosion Prevention and Control .. 13
3.6.5 Surface Water Resources ... 13
3.6.6 Hazardous and Solid Wastes 13
3.6.7 Cultural Resources ... 14
3.6.8 Sensitive Species Protection ... 14
3.6.9 Special-Status Wildlife ... 15
3.6.10 Public Safety .. 15
3.6.11 Weed Abatement .. 15
3.6.12 Wildland Fire Protection .. 16

4. RECLAMATION ... 16

4.1 Reclamation Plan and Surface Treatment ... 16
 4.1.1 Public Safety Considerations ... 17
 4.1.2 Soil ... 17
 4.1.3 Compaction .. 17
 4.1.4 Revegetation .. 18
 4.1.5 Wildlife Habitat .. 18
 4.1.6 Revegetation Protection .. 18
 4.1.7 Revegetation Baseline .. 18
 4.1.8 Revegetation Success Criteria .. 18
 4.1.9 Monitoring and Maintenance ... 19

4.2 Equipment Removal and Closure Activities ... 19
 4.2.1 Structure and Equipment Removal .. 19
 4.2.2 Closure of Openings .. 19

4.3 Phased Reclamation .. 19

4.4 Reclamation Cost Estimate ... 19

TABLES
Table 1 Summary of Planned Surface Disturbance ... 6
Table 2 Mechanized Equipment .. 8
Table 3 Schedule .. 8
Table 4 On-Site Personnel .. 9
Table 5 Exploration Road Revegetation Seed List ... 18

FIGURES
Figure 1 Project Location
Figure 2 Claim Site Location
Figure 3 Exploration Site and Claims
Figure 4 Existing Conditions Aerial Photograph
Figure 5 Existing Conditions Photographs: Road from East
Figure 6 Existing Conditions Photographs: Newmont
Figure 7 Existing Conditions Photographs: Central and Dragonfly
Figure 8 Oblique Aerial of Exploration Site
Figure 9 Vegetation
Figure 10 Land Management
Figure 11 Dragonfly Target Exploration Drilling Plan
Figure 12 Central Target Exploration Drilling Plan
Figure 13 Newmont Target Exploration Drilling Plan
Figure 14 Exploration Drill Site Schematic
Figure 15 Drill Crew and Pack String Camp Site Locations
Figure 16 Typical Drill Crew Camp Surface Disturbance
Figure 17 Typical Pack String Camp Surface Disturbance
Figure 18 Typical Cross Section Exploration Road Reconstruction and Reclamation

APPENDICES
Appendix A Exploration Project List of Claims
Appendix B Stormwater Pollution Prevention Plan
Appendix C Fugitive Dust Control Plan
Appendix D Reclamation Cost Estimate
1. INTRODUCTION

This Plan of Operations (Plan of Operations or PO) is effectively a re-submittal of the December 2015 Plan of Operations submitted by Silver Standard US Holdings, Inc. (Silver Standard) as the “Perdito Project”, with additional drill sites. The Perdito Project proposed drilling access by overland travel and exploration road construction along the established footprint of roads developed and reclaimed by prior operators. Reopening 14,350 feet (2.7 miles) of roadway, 5,600 feet (1.06 miles) of overland travel and construction of seven drill pads was planned, with seven exploration holes up to 1,000 feet below ground surface. The U.S. Department of the Interior, Bureau of Land Management, Ridgecrest Field Office (BLM) prepared an Environmental Assessment (DOI-BLM-CA-0050-2017-0037-EA) that evaluated the Proposed Action Alternative, a Minimum Road Construction Alternative, a Helicopter Access Alternative, and a No Action Alternative. The BLM approved the Helicopter Access Alternative. Silver Standard did not proceed with the project.

Mojave Precious Metals, Inc. (MPM or Operator) formally became the Operator of the property in June 2020 and provided the required reclamation cost estimate and financial assurance to initiate work under the approved Plan of Operations (using helicopter access). That Phase I drill program was completed in October and November of 2020. Drilling at four (instead of the seven approved) sites was accomplished where MPM analysis of prior and supplemental geologic data showed favorable conditions. Over 8,300 feet were drilled. The results increased the knowledge of geologic structure and mineral resources at select locations.

This modification to the approved Plan of Operations is proposed as a Phase II effort that will update and verify historic data and expand upon known areas of gold mineralization. This plan for access is consistent with the previous Silver Standard project for access along a prior developed route with a combination of overland travel and re-construction of the roads developed by Newmont and BHP. MPM would access and drill at up to 30 locations with an estimated 120 holes averaging 300 meters (984 feet) below ground surface (bgs). With the exception of additional drilling, the overall footprint of surface disturbance in this plan is largely consistent with the Silver Standard proposal that already received full National Environmental Policy Act (NEPA) review under Environmental Assessment (DOI-BLM-CA-0050-2017-0037-EA).

Exploration activities proposed in this PO modification are focused on determining if there are sufficient economic mineralized resources to continue exploration work. The activities in this Phase II drill program are focused on obtaining the necessary evaluation data while limiting new surface disturbance and avoiding or minimizing resource conflicts identified in baseline studies and the prior EA. The project is limited to exploration activities; no mining or processing of minerals is proposed.

1.1 Exploration Right and Responsibility

This Plan of Operations modification is prepared in accordance with BLM surface management regulations (43 CFR § 3809.401). Pursuant to these regulations, this PO includes descriptions of proposed exploration activities and associated reclamation on public lands controlled by the Operator.

The Operator has the right to reasonably explore the claims pursuant to federal statutes including the Mining Law of 1872 and the U.S. Mineral Policy promoting the economic development of domestic mineral resources. Federal policy encourages the development of federal mineral resources and requires reclamation of surface disturbances, consistent with the Federal Land Policy Management Act (FLPMA) and the Mining and Mineral Policy Act of 1970. Under these mining laws, the statutory right exists, guided by U.S. Department of Interior (DOI) regulations, to utilize federal lands for the purpose of mineral prospecting, exploration, development, extraction, and other associated reasonable uses.

The DOI regulations state that, “this statutory right carries with it the responsibility to assure that operations include adequate and responsible measures to prevent unnecessary or undue degradation of the federal lands and to provide for reasonable reclamation” (43 CFR § 3809). The 43 CFR § 3809 surface management regulations were modified on October 31, 2001 and the definition of “unnecessary or undue degradation” at § 3809.5 was linked to the general and specific performance standards listed in § 3809.420.
These performance standards establish sideboards for determining whether a proposed Plan of Operations complies with the unnecessary or undue degradation standard.

The Operator has incorporated specific operational and reclamation measures in this PO that will be taken to prevent unnecessary and undue degradation. The measures identify actions to be implemented that will:

- limit surface disturbance to the minimum necessary,
- provide for concurrent reclamation,
- integrate applicant-committed measures for environmental protection, and
- provide for public safety.

1.2 Location and Access

The Mojave Property (Property) is located in west-central Inyo County in the southern Inyo Mountains approximately 3.4 miles (5.5 km) east of Keeler, CA and 15.5 miles (25 km) southeast of Lone Pine, CA as shown in Figure 1, “Project Location” and Figure 2, “Claim Site Location.” The property is located within Sections 24 to 26 and 35 to 36 in Township 16S, Range 38E, Sections 19 to 22 and 27 to 34 in Township 16S, Range 39E, Sections 1 and 12 in Township 17S, Range 38E and Sections 2 to 11, 15 to 16 and 18 in Township 17S, Range 39E on the Cerro Gordo Peak, Nelson Range, Keeler and Santa Rosa Flat 7.5-minute United States Geological Survey (USGS) Quadrangle maps. The property lies within Inyo County parcels 0273200100BLM, 03111000BLM.

For purposes of this exploration PO, the planned surface disturbance and surrounding study area are within a block of 121 mining claims encompassing 2,424 acres, as shown on Figure 3, “Exploration Site and Claims.” The Exploration Project Site is focused along previously developed and reclaimed roads in areas termed Newmont, Central and Dragonfly, which are accessed from existing BLM roads and reclaimed drilling roads.

The exploration site is accessed from Saline Valley Road, north of Highway 190. BLM-managed off-road vehicle route S2978 is used to access the Project area from White Mountain Talc Road.

1.3 Operator and Claims Information

1.3.1 Operator Information

Corporate Address and Phone Number:
Mojave Precious Metals, Inc.
1020-800 Pender Street W
Vancouver, BC V6C2V6
Tel: 604-331-5090

Taxpayer Identification:
TIN: 36-4953108

Local Address:
Mojave Precious Metals, Inc.
120 S Main St. Unit 11
Lone Pine, CA 93545

Contact:
Stephen Swatton, CEO
E-mail: Steve@mojavepreciousmetals.com
1.3.2 Claim Owners and Claim Numbers (Exploration Site)

Steven Van Ert
P.O. Box 3785
Chatsworth, CA 91313
Tel: 818-635-3694

Noel Cousins
P.O. Box 37061
Tucson, AZ 85740

The exploration Project claims are under option agreement to MPM. A list of mining claims for the exploration project in this PO is provided in Appendix A, “Exploration Project List of Claims.”

2. ENVIRONMENTAL SETTING

2.1 Reclaimed Exploration Roadway and Drilling Sites

As referenced above, this next phase of drilling will largely use the footprint of reclaimed roads and overland sites that were subjected to prior surface disturbance. The purposes of this are both to limit the environmental impact of this phase of explorations, and to maintain consistency with the analyses and conclusions already determined in the completed Environmental Assessment (DOI-BLM-CA-0050-2017-0037-EA). Access road lengths are very similar, and acreage differences are predominantly attributed to different estimating methods (MPM used recent high-definition aerial photography to measure disturbance).

This area of public lands was permitted and drilled by Compass Minerals in the late 1980’s, when the lands involved were part of the Cerro Gordo Wilderness Study Area. In 1988 the BLM approved a PO for Newmont Mining Corporation (Newmont) and exploration drill program was completed in the southern part of the current project area. The BLM subsequently approved PO CACA-37380 by BHP in 1997 for targets in the northerly region of the current project. In all, seven miles of drilling access routes to 85 drill sites were developed on the claims. That program was completed, and access routes graded and reseeded in 2000.

Photographs of the existing conditions along the exploration roadway are shown in Figure 4 “Existing Conditions Aerial Photograph,” Figure 5, “Existing Conditions Photographs: Road from East,” Figure 6, “Existing Conditions Photographs: Newmont,” and Figure 7, “Existing Conditions Photographs: Central and Dragonfly.”

2.2 Topography

The claim Site lies within the Basin and Range physiographic province, an area characterized by varied topography of north-south trending mountain ranges separated by flat lacustrine-gravel-volcaniclastic-volcanic filled valleys.

The Exploration Project Site lies along an unnamed ridgeline and drainages southwest of a geologic feature named Conglomerate Mesa, as shown in Figure 8, “Oblique Aerial of Exploration Site.” Elevation ranges from approximately 5,000 ft (1,524 m) to 7,700 ft (2,346 m) above mean sea level (msl).

2.3 Vegetation

MPM commissioned updated vegetation surveys along the access route in April, May and July 2020. Three land cover types occur within the exploration site area: Joshua tree woodland, black sagebrush scrub, and singleleaf pinyon—Utah juniper woodland, shown in Figure 9, “Vegetation.”

Joshua tree woodland is known in California primarily from the southeastern portion of the state, in the Mojave Desert, adjacent Great Basin, small portions of the eastern and southern Sierra Nevada Mountains, and portions of the Transverse Ranges. It occurs on alluvial fans, ridges, and gentle to moderate slopes on soils ranging from fine silts to gravel. Within the Project Area, Joshua tree woodland occurs in open stands on all slopes and aspects, where Joshua tree is present at greater than or equal to 1 percent cover and pinyon pine (Pinus monophylla) and Utah juniper (Juniperus osteosperma) are also present. Joshua tree woodland was mapped and classified according to the CNPS alliance.
membership rule of < or = to 1 percent cover, which is consistent with the definition used in the DRWCP BLM LUPA.

Black sagebrush scrub is known in California from the Great Basin, Mojave Desert, eastern Sierra Nevada, and the San Bernardino Mountains. It occurs on shallow, poorly drained soils over bedrock or a clay or caliche layer on flats, depressions, and rocky slopes and ridges of basalt or limestone. Black sagebrush scrub was the most widespread plant community in the Project Area, occurring on north-, west, and east facing aspects on gentle to steep slopes. Vegetation composition is similar to Joshua tree woodland except that Joshua tree is either absent or present at less than 1 percent cover, black sagebrush has greater than 2 percent cover, and where no other shrub species has higher cover.

Singleleaf pinyon—Utah juniper woodlands are known in California from the Great Basin, upper elevations in the Mojave Desert, Sierra Nevada, Southern California mountains, and possibly on Caliente Peak in the central California Coast Ranges. This alliance occurs on alluvial fans, slopes, ridges, canyons, and ravines, and soils are commonly well drained. In the Project Area, singleleaf pinyon—Utah juniper woodlands are widespread, occurring on all slopes and aspects, though stand sizes are often relatively small. In the tree canopy, singleleaf pinyon is often the only species present and always dominant, with Utah juniper and Joshua tree present at low cover. The shrub and herb layers are similar to those of Joshua tree woodlands.

2.4 Climate

The climate at the site is arid, typical of dry desert climate, with hot summers, cold winters and low levels of annual precipitation. Weather records from Lone Pine, CA, indicate average January maximum and minimum temperatures of 57°F (14°C) and 30°F (-1°C), respectively. Average July maximum and minimum temperatures are 100°F (38°C) and 66°F (19°C). Temperature varies greatly from daily to nightly temperatures with differences reaching up to 40°F (4°C) in the summer months.

At Lone Pine, CA, precipitation is recorded to average 6 inches (15.2 cm) of rainfall and 5 inches (12.7 cm) of snowfall per year, with evaporation greatly exceeding precipitation.

There are no perennial streams or standing waters (lakes, ponds, or wetlands) in the project area. The nearest stream and surface water body are the Owens River and Owens Lake, located approximately 10 miles west of and approximately 3,200 feet in elevation below the exploration Site.

3. SITE BACKGROUND AND LAND USE MANAGEMENT

3.1 Background

The vicinity of the mining claim site has a history of mining. Mining was conducted in the area that is now the Cerro Gordo Conglomerate Mesa ACEC from 1865 until 1890. Mining also occurred during the Great Depression. During the 1980’s, public lands in the area of the claim Site were permitted and drilled by Compass Minerals, when the lands involved were part of the larger Cerro Gordo Wilderness Study Area (WSA). Newmont subsequently completed road development and exploration drilling in 1989 when the property was in within the then boundaries of the Cerro Gordo Wilderness Study Area (WSA). BHP completed additional road development and drilling in 1997.

The historic mining town of Cerro Gordo is located approximately four miles north of the exploration site in the Cerro Gordo WSA ACEC. The Cerro Gordo WSA ACEC was created in part to protect the town of Cerro Gordo and the town’s primary access route (Cerro Gordo Road). In addition to the Cerro Gordo Road, the historic Keeler to Death Valley (KDV) stock trail is located in the vicinity and is still used to access the Cerro Gordo Conglomerate Mesa ACEC.

The claims shown in Figure 3 and listed in Appendix A, were staked according to all federal requirements. Annual fees have been paid by the claimants to maintain these properties for their mineral potential.
The exploration claims site is located in an area that, prior to 1994, was included within the Cerro Gordo Wilderness Study Area (WSA). WSAs were created in the early 1980s during a period of California Desert Conservation Area planning where numerous areas were evaluated for possible designation as permanent wilderness. The BLM evaluated possible wilderness designations in this region and in 1987 a Final Environmental Impact Statement (FEIS) for the Benton-Owens Valley/Bodie-Coleville Study Areas in the Bishop Resource Area and Caliente Resource Area was prepared to determine the suitability of nineteen WSAs for inclusion in the National Wilderness Preservation System. The Cerro Gordo WSA was among the nineteen WSAs studied. The purpose of the 1987 FEIS was to provide guidance to the President when determining whether areas were suitable for wilderness designation.

The 1987 FEIS proposed action for the Cerro Gordo WSA was to not designate any of that WSA as wilderness. The recommendation was based on local comments received during the public review period of the Draft Environmental Impact Statement and a recommendation from the Bakersfield District Advisory Council to declare the WSA as not suitable for wilderness designation. The FEIS found that portions of the WSA contain high potential for metallic minerals and a major portion of the WSA had moderate potential for nonmetallic minerals and that numerous claims were located in small portions of the WSA.

In 1994, the California Desert Protection Act designated a portion of the Cerro Gordo WSA as the Malpais Mesa Wilderness and congress released the remaining area, including the subject MPM claim block area, from wilderness designation.

3.2 Land Use Management

Land use on the claim site is governed by the BLM Desert Renewable Energy Conservation Plan (DRECP) Land Use Plan Amendment (LUPA) dated September 14, 2016; the Northern and Eastern Mojave Desert Management Plan dated July 2002; and the California Desert Conservation Area (CDCA) Plan dated 1980, amended in 1994 and in August 1999. A portion of the northern block of the claim site is located within the Cerro Gordo Conglomerate Mesa Area of Critical Environmental Concern (ACEC) designated in 1980 and a small portion of the southern boundary is within the Malpais Mesa Wilderness. The Conglomerate Mesa ACEC was designated to protect cultural resources, including Native American uses, and rare plants and animals and their habitat.

The majority of sites planned for drilling are outside the ACEC. The Property boundary in relation to the ACEC and NLCS Wilderness Areas is shown in Figure 10, “Land Management.” Mineral exploration within an ACEC is treated as restrictive and analyzed on a case-by-case basis by the BLM.

3.3 BLM and County Land Use Approvals

The site is located on federally owned land administered by the BLM. The exploration drilling program is entirely on unpatented mining claims located on federal lands. As referenced above, for public lands administered by the 43 CFR § 3809 surface management regulations provide the policies, procedures and standards under which BLM authorizes exploration and surface mining. The authorization (for surface disturbance above minimum thresholds) is expressed as a Decision on a Plan of Operations. The approved PO is the land use entitlement to conduct specified operations.

While BLM regulations under 43 CFR § 3809 contain requirements for reclamation, for any mining-related activity exceeding one acre of surface disturbance, a reclamation plan is also required to be approved pursuant to the California Surface Mining and Reclamation Act (SMARA). Under a 1998 Memorandum of Understanding between the USDI BLM and the California Department of Conservation, compliance with the SMARA is to be undertaken by the local California lead agency. Inyo County is the local lead agency and will process a reclamation plan for the project.

A reclamation plan for the exploration program has been prepared in accordance with the requirements of the California Surface Mining and Reclamation Act (SMARA), found in California Public Resources Code (PRC) Section 2710 et seq., Title 14 of California Code of Regulations (CCR) Section 3500 et seq., and Inyo County’s (County) implementing ordinance. The plan has been concurrently submitted to the County.
For consistency in reclamation actions, all measures planned under the County reclamation plan are without exception included in this PO. County approval must occur subsequent to the BLM’s decision on the PO.

3.4 Description of Operations

3.4.1 Surface Disturbance

The previously approved Plan of Operations (CACA-56495) provides for 0.2 acres of surface disturbance. That footprint is encompassed within the limits of the planned surface disturbance in this modification to the PO.

Exploration activities proposed in this modification include overland access, reconstruction of previously graded and reclaimed roads, construction of exploration drill pads and sumps, exploration operations, and reclamation and associated activities. Figure 3 showed the planned roadway and drilling sites. Table 1, “Summary of Planned Surface Disturbance,” presents estimate acreage for each of the planned activities.

Table 1
Summary of Planned Surface Disturbance

<table>
<thead>
<tr>
<th>Category</th>
<th>Dimensions</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overland Routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Routes</td>
<td>6,100 feet X 8 feet</td>
<td>1.1</td>
</tr>
<tr>
<td>Drill Pads (Approximately 10 Sites)</td>
<td>20 X 50 feet</td>
<td>0.2</td>
</tr>
<tr>
<td>Reclaimed Exploration Road Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading (Including Drill Pads—Approximately 20 Sites)</td>
<td>14,140 feet</td>
<td>9.71</td>
</tr>
<tr>
<td>Exploration Trenches (includes overland excavator)</td>
<td>6 feet X 1000 feet</td>
<td>0.1</td>
</tr>
<tr>
<td>New Road Construction</td>
<td>None</td>
<td>0.0</td>
</tr>
<tr>
<td>Incidental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(includes overland excavator)</td>
<td>10% of total</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12.2</td>
</tr>
</tbody>
</table>

Notes:

1. Reconstruction of the exploration road is expected to result in surface disturbance similar to the prior surface disturbance footprint constructed by BHP and Newmont. The path of construction varies with slope angle and acreage is estimated based on photointerpretation of the reclaimed roadway. The footprint averages 30 feet wide.

2. Drilling site disturbance areas would be along the road footprint.

3. Surface disturbance incidental to the planned activities may include sediment and erosion control berms and fencing, geophysical activities, tents for camping and emergency preparedness, drill camping and pack string camp, footpaths, variations in grading and overland travel, and adjustments to the size and location of road and drill sites in the field. Estimated at 10% of planned surface disturbance.

The site and exploration roadway would be accessed from the terminus of the nearest open designated vehicle route (BLM vehicle route S2978). Enlarged maps of the reconstructed exploration route and overland access are shown in Figure 11, “Dragonfly Target Exploration Drilling Plan,” Figure 12, “Central Target Exploration Drilling Plan,” and Figure 13, “Newmont Target Exploration Drilling Plan.” These maps detail the access and drilling, all of which will be placed within the footprint of prior operations.”

Onsite access to drilling sites would use a combination of overland travel and travel on constructed roads consistent with prior operations. BLM nevertheless considers those areas reclaimed and the proposed activities essentially equivalent to new construction.

3.4.2 Overland Access

Overland travel, without road grading, will be used where practical and safe. To minimize disturbance, where prior graded surfaces cannot be used, the access to a prior drill site will be overland, generally using the same path used when the site was previously drilled access. Overland equipment travel would be typically be used on flat areas and areas with shallow slopes as shown on the enlarged maps. Overland
travel may require use of equipment to move large rocks. Some vegetation and rocks may be removed using hand tools. Otherwise, overland travel would involve the crushing of existing vegetation. It would not require scraping or blading. Personnel footpaths are included in this surface disturbance category.

Overland access segments are calculated at 6,100 feet (1.1 miles) as shown on Figures 11, 12, and 13.

3.4.3 Road Construction and Maintenance

Roadways providing access to the site (BLM vehicle route S2978) are in disrepair with erosion, washboarding and rock debris, making it unsafe for regular travel. Depending on whether the County or BLM has completed maintenance when Phase II drilling begins, MPM may perform limited maintenance for safe access. Maintenance would be limited to smoothing the surface (such as with a box scraper, harrow or blade); the roadway would not be improved or widened.

Exploration road construction would be required on steeper slopes to provide a safe running surface of the appropriate grade and angle to support drilling equipment. Road construction may range from simple blading to cut and fill operations resulting in cut banks and fill slopes. The resulting slope disturbance area is dependent on the underlying slope rather than the type of equipment used. Lengths of exploration road requiring construction are shown on Figures 11, 12 and 13. Side-casting of material would be minimized.

An experienced road-building contractor would complete the initial construction grading, as well as the reclamation grading. The planned road work will consist of re-opening a portion of a previously existing re-contoured and reclaimed roads. Exploration road construction will use D-6 through D-8 class bulldozers or a track-mounted excavator. Material will be side cast for reclamation. Road re-construction will occur over an estimated 14,140 feet (2.6 miles) for this exploration program. The road will be approximately 10 to 12 feet wide and would be entirely within the boundaries of prior roadway and drill site footprints. No extensions of road to new areas on previously undisturbed land are proposed under this PO modification.

3.4.4 Growth Media Stockpile

Growth media consisting of the top 3 to 6 inches of surface material and vegetation) would be scraped as a first equipment pass and stockpiled along the edge of the road or drill pad to be replaced immediately after regrading of the disturbed areas.

3.4.5 Drill Sites and Drilling

Drill sites will use the roadway surface disturbance footprint and be confined to the existing reclaimed surface disturbance areas remaining from prior exploration campaigns.

A typical drilling site is shown in Figure 14, “Exploration Drill Site Schematic.” The drill site would include a sump to contain drill water and drilling mud. In some areas, a common sump may be used to manage water from multiple drill sites. The sumps are designed to prevent discharge of sediments.

Sumps for drill fluids and cuttings will be excavated within the limit of the prior disturbance footprint. Sumps will be concurrently backfilled during the exploration program after completion of drilling at each site for safety reasons and to ensure protection of the environment. One end of each sump will be sloped to provide an escape route in the event an animal nevertheless enters the sump.

MPM may use a flocculent acceptable to the BLM and the RWQCB to accelerate the settling of particles. Other passive filtration methods will be employed to manage the separation of fine particulates from the water. These passive filtration devices may include but not be limited to filter bags or centrifuges.

Drill hole depths are planned at 300 meters (984 feet) below ground surface. Variations due to surface slope and drilling inclination, and geologic or drilling conditions that limit the planned depth being reached generally result in less feet per hole.
3.4.6 Equipment

Exploration drilling will be conducted by drill rigs providing both reverse circulation (RC) and core drill capabilities. Each rig will be supported by at least two rubber-tired vehicles. It should be assumed that all rigs would be operating simultaneously. Additional support vehicles would not be needed. Equipment is identified in Table 2, “Mechanized Equipment.”

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track-mounted drill</td>
<td>2</td>
</tr>
<tr>
<td>Tire mounted drill</td>
<td>4</td>
</tr>
<tr>
<td>Compressor</td>
<td>1</td>
</tr>
<tr>
<td>Generator</td>
<td>2</td>
</tr>
<tr>
<td>Pipe carrier</td>
<td>1</td>
</tr>
<tr>
<td>4,000-gallon water truck</td>
<td>2</td>
</tr>
<tr>
<td>Backhoe</td>
<td>1</td>
</tr>
<tr>
<td>D6 or equivalent dozer with 10-foot or less blade</td>
<td>1</td>
</tr>
<tr>
<td>Motor grader/blade</td>
<td>1</td>
</tr>
<tr>
<td>Light-duty trucks</td>
<td>6</td>
</tr>
<tr>
<td>Flatbed truck</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: 1. Equipment listed may be substituted by equivalent alternative, based upon availability

Water would be stored in a 3,000- to 5,000-gallon water tank that may be mounted on a truck for mobility between drilling sites.

Fuel would be stored in a truck-mounted tank and/or 55-gallon drums at each drill pad during drilling. The drums would be set within a non-spill containment pad, either located on a truck or in a plastic-lined earthen berm area. A portable toilet would be provided and cleaned regularly. It is estimated that 10,600 gallons of fuel would be consumed for the drilling program.

Drilling completed at night will require lighting for operational and safety. Lighting would be limited to that mounted on the rigs and directed at the drill hole and adjacent work areas to minimize fugitive light. Mobile light towers would not be used.

3.4.7 Schedule

MPM would begin the surface disturbance activities in the exploration program at the earliest possible time following BLM approval of this PO modification. The drilling activities and approximate time required are shown in Table 3, “Schedule.”

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconstruction activities (weed removal, plant salvage, drill site placement survey and required preconstruction compliance actions)</td>
<td>6-12 Weeks</td>
</tr>
<tr>
<td>Road Construction</td>
<td>1-2 Weeks</td>
</tr>
<tr>
<td>Crew and Rig mobilization, drilling and demobilization</td>
<td>2-4 Months</td>
</tr>
<tr>
<td>Reclamation (final drill hole plugging and sump drying, regrading, growth media replacement, reseeding, replanting of salvaged plants)</td>
<td>4-8 Weeks</td>
</tr>
<tr>
<td>Post-reclamation monitoring</td>
<td>2-3 years</td>
</tr>
</tbody>
</table>
Thus, the exploration work is anticipated to occur over an approximate 5 to 10 months, followed by reclamation monitoring. The active construction and drilling period is considered a short-term project.

Drilling would be completed up to 24 hours per day and seven days per week during the two to four-month active drilling period. There may be periods when drilling is paused while awaiting analytical test results from samples sent to off-site laboratories. Equipment would be secured, and the site monitored by personnel during such downtime.

If additional drilling is needed following this program, road closure (regrading and revegetation) may be postponed subject to BLM approval. Reclamation of the camping areas would be completed within two weeks of the conclusion of occupancy or at the end of the drilling and drilling reclamation, whichever is earlier.

3.4.8 Personnel

The anticipated Personnel are summarized in Table 4, “On-Site Personnel,” Personnel. Employees and contractors would likely commute daily (requiring two round trips per day, one for each shift) from either Lone Pine or Ridgecrest.

<table>
<thead>
<tr>
<th>Task/Activity</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological and cultural monitors</td>
<td>2</td>
</tr>
<tr>
<td>Preconstruction clearing, plant salvage, road grading, pad and sump development, reclamation grading and growth media replacement</td>
<td>3</td>
</tr>
<tr>
<td>Drill crew, geologists and other technical support</td>
<td>9</td>
</tr>
<tr>
<td>Water and supplies deliveries</td>
<td>2</td>
</tr>
<tr>
<td>Management, supervision, condition compliance</td>
<td>2</td>
</tr>
<tr>
<td>Revegetation planting and seeding</td>
<td>2</td>
</tr>
<tr>
<td>Monitoring</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
</tr>
</tbody>
</table>

Notes:

1. BLM will complete cultural resources surveys prior to road construction and drilling. Cultural monitors are not required but may be employed at the operator’s discretion.

3.4.9 Fuel and Reagent Handling and Storage

No fuel or lubricant storage tanks are planned. Hydrocarbons used would be stored on the equipment and fueling of equipment would be done with mobile fuel/lube trucks. Diesel fuel used on the site will comply with California Air Resources Board (CARB) low-sulfur diesel requirements. Spill containment will consist of a plastic sheet raised on the edges, or a containment tub, placed beneath the fueling point and covering the soil. Petroleum lubricants in the form of grease and motor oil would be in stored on the drill rig in a sealed box and consist of one case of each product. Less than one gallon of solvent would be on site at any one time and stored with the oil and grease. Any additives for dust suppression or used for drilling water used at the site will be non-hazardous and biodegradable. Up to five gallons of each product would be stored on the water truck and the drill rig, respectively.

A spill contingency plan is provided in this PO that provides procedures to be implemented in the event of a spill including clean up, disposal and reporting.

Should spillage of petroleum-based products occur, it will be collected and placed in a closed bin and transported off-site for proper disposal.
3.4.10 Stormwater and Erosion Control

A Stormwater Pollution Prevention Plan (SWPPP) will be followed to prevent erosion. The SWPPP included as Appendix B, “Stormwater Pollution Prevention Plan,” provides for straw bales, wattles, and other diversion controls as needed if operations coincide with winter precipitation. Drainage structures may consist of, but not be limited to, water bars, borrow ditches, contour furrows, and detention ponds sized to handle maximum seasonal water flows. Any such features would be associated with the road development and entirely within the existing disturbance footprint.

3.4.11 Water Supply and Use

Water is used for core drilling to lubricate the drill bit and the rods. Water expelled from the core hole is directed into a shallow depression (sump) to retain the fine particles, prevent sediment discharge, and to recycle the water.

Water will be required when drilling activities are taking place (between 500 and 1,000 gal/day). Water will be supplied from a licensed commercial delivery service and trucked to the site. A typical water truck carries 4,000 gallons.

Water may also be used for the road surfaces if vehicle traffic creates noticeable dust, although the exploration program will have limited traffic and vehicle speeds will be kept below 15 mph. The same water truck delivering drilling water could satisfy dust control needs if equipped with a spray bar.

Water will be enclosed in tanks and will be recirculated from the sumps for drilling whenever possible to reduce water use. Drilling mud and cuttings will be contained in the sumps. Water will be sourced from a permitted/authorized source. Water remaining in tanks or trucks will be drained onto the land surface in such a way as to prevent ponding, rilling and erosion at the cessation of drilling.

3.4.12 Occupancy

Drilling could be suspended due to adverse weather conditions, safety concerns (such as fire of smoke) or unforeseen delays in operations due to lack of equipment, supplies or personnel. Drilling may be paused while awaiting analytical test results from samples sent to laboratories. Protection of equipment, drilling samples theft or loss and maintaining public safety from unauthorized entry will be necessary during such times, requiring some personnel to be present. Additionally, the flexibility to camp and not have to commute from town every day will make for a more efficient work schedule, as well as reduce vehicle miles.

Planned locations for both drill crew and pack string and crew are shown in Figure 15, “Drill Crew and Pack String Camp Site Locations,” Figure 16, “Typical Drill Crew Camp Surface Disturbance,” and Figure 17, “Typical Pack String Camp Surface Disturbance.” Surface disturbance is incorporated into Table 1.

Drill Crew Camping

No permanent structures or facilities will be placed in the exploration area.

Drilling crew may camp at established locations along BLM roadways leading to the site. Wheeled vehicles would be limited to authorized routes. Individual periodic tent camping by some crew may occur near the drilling locations. The planned occupancy is directly related to the exploration activities; drilling crew and would camp only during the time work under this Plan of Operations is being completed. The camp sites would be along established roads or the drilling roads observable to BLM. Vehicles and equipment for occupancy would be limited to that supporting camping.

Campers would use portable toilets. Camping locations have been selected at established sites to minimize vegetation disturbance. All equipment and any refuse would be removed at the conclusion of camping.

Nothing proposed in this PO will interfere with public access to surrounding public lands. Existing BLM routes will remain open to the public and will not be blocked by exploration operations.
Mule Pack Strings
Use of mule pack strings may be employed to deliver supplies and remove exploration rock samples. Mules are a source of enjoyment and a source of local business revenue and employment in Inyo County. The opportunity to support drilling operations with pack strings would reduce vehicle miles travelled. Mule four pack strings consisting of five mules each are typically used, with a packer mounted on a saddle mule. Routes of travel would be along the reconstructed exploration roadway.

A temporary corral (about 50 feet diameter) would be set at established camping areas along BLM roadways. One flatbed pickup would supply feed and water, along with one pickup truck. Packer crew would have a trailer and up to four tents.

Site preparation and reclamation would involve:

1. Site selection would include an established hard, durable surface or sand, away from water sources or potential drainageways,
2. Panels/corral set up to allow for less compaction and free movement in a contained area,
3. Water would be delivered by truck,
4. Use of certified weed-free hay, and
5. Daily manure cleanup and removal at end of the project.

Contractors used would have a permit issued by the BLM.

3.5 Operating Plans
3.5.1 Quality Assurance

MPM will conduct site inspections of exploration activities on a daily basis. Radio contact will be maintained with the drill crews to address unexpected conditions or problems that may be encountered.

Minor maintenance of the existing road surface may be necessary to provide a safe and durable running surface and manage stormwater controls.

Preventative measures will be taken to ensure that cultural sites, wildlife habitat, and wildlife are avoided. In addition, conditions of approval in the Decision for PO CACA-056495 are integrated into this PO.

3.5.2 Monitoring Plan

MPM will provide a report to the BLM within 60 days of completion of the drill program documentation of the project activities including, a map of surface disturbance and reclamation completed, monitoring data (water encountered during drilling, stormwater events, revegetation actions), and a summary of drill hole status (active, or plugged and closed).

3.5.3 Interim Management

Temporary suspension of the exploration drilling closure is not anticipated but could occur due to adverse weather conditions, safety concerns (such as fire of smoke) or unforeseen delays in operations due to lack of equipment, supplies or personnel. As noted above, there may be periods when drilling is paused while awaiting analytical test results from samples sent to off-site laboratories.

Should temporary suspension of exploration drilling be necessary, the operator would notify BLM, identify the reason(s) and the expected. Incomplete drill holes would be covered or backfilled. Equipment would be secured or removed, depending on the term. Erosion control measures would be completed.

For extended or seasonal shutdowns, drill holes would be abandoned according to permit requirements and sumps dried and filled. Equipment would be secured or removed. Signage would remain. The exploration roadway would be monitored regularly for erosion control BMPs.
3.6 Applicant-Committed Environmental Protection Measures

The Operator will implement the following environmental protection measures to ensure a safe and environmentally-sound exploration project.

3.6.1 Air Quality

Best management practices will be employed to protect air quality by undertaking road maintenance activities to reduce fugitive dust emissions. Graded roads will be watered as needed, based upon weather and surface conditions. Application of water to the access road by water trucks will also be accomplished as needed. Measures for dust control plan are provided in Appendix C, “Fugitive Dust Control Plan.”

An on-site 15-mph speed limit for project equipment will be enforced. Vehicle speeds will be reduced in areas of disturbance to minimize the potential for fugitive dust emissions to maintain operational safety and protect wildlife present. Vehicles will be properly maintained to ensure they are operating in a manner to minimize vehicle emissions.

Electrical power to run air compressors and/or work lighting, would be provided by a drill rig mounted generator permitted for use by CARB. If a non-exempt portable diesel-powered generator is necessary, it shall be registered under the Statewide Portable Equipment Registration Program Regulation (PERP) administered by CARB.

Fuel used on the site will comply with CARB fuel quality requirements. Off-road equipment used on the project will be registered under CARB's DOORS program prior to operating on the site.

3.6.2 Water Quality

Drill holes will be plugged upon completion in accordance with Inyo County Well Permits and California Bulletin 74-81 and 74-90. No groundwater table has been encountered in prior drilling and is not expected in this program.

Storm water BMPs will be used for surface disturbance sites to minimize storm water erosion.

Drill cuttings will be contained on site, and fluids managed using appropriate control measures. Sediment traps will be used as necessary and filled at the end of the drill program.

3.6.3 Spill Contingency Plan

MPM has prepared a Spill Prevention, Control and Countermeasures (SPCC) Plan for the project. Materials and equipment necessary for spill cleanup will be kept at each drill rig. Equipment and materials will include, but not be limited to, shovels, gloves, safety glasses, sorbent materials (absorbent pads and granulated clay pellets), sand, sawdust, and plastic/metal trash containers specifically for this purpose.

Well-maintained equipment will be used to perform the work required on the Project. When practicable, equipment maintenance will be performed off-site.

In the event of oil, fuel, lubricating grease or other equipment leaks, cleanup will be conducted immediately. If a leak results in liquid pooling an oil-absorbing product will be applied. Once the cleanup product has absorbed the spill material, the product will be removed and placed in the petroleum contaminated soil bin located on the active pad and the material disposed of according to state and federal regulations. Any contaminated soil will be removed, managed, and disposed of at an off-site facility in compliance with state and federal regulations.

Regulated wastes will be removed from the site and disposed of in a state, federal, or local designated area.
3.6.4 **Soils and Erosion Prevention and Control**

MPM will conduct exploration operations in a manner which minimizes soil erosion. Surface disturbance for this exploration program is aligned with prior roadways that have already disturbed native conditions. The footprint and limited time frame of the project is such that the removal of vegetation and overburden will be minimal. Additionally, due to the limited scope of the project, no erosion control facilities will need to be constructed.

Disturbance of or removal of vegetation or overburden will be limited to the minimum necessary for operations, and restricted to the road alignment, and its associated cut and fill slopes.

The following specific methods will be used to control erosion:

- Exploration drill roads will be designed as temporary facilities that will not require long-term erosion control measures, such as surface armoring, sedimentation basins, and the like.
- Exploration roads will be constructed to generally conform to the overall topography so as to not alter and control run-off.
- Roads will be constructed using the minimal amount of cut and fill necessary to achieve a surface that can be safely used for exploration activities.
- Exploration roads will be inclined outward from the slope to encourage sheet flow conditions and avoid collection of flows that could lead to gulleying.
- Erosion and runoff control measures, such as water bars, ditching, and other water control structures will be implemented in areas of surface disturbance.
- Water bars will only be used to direct runoff that may collect.
- Care and maintenance measures would be taken to ensure road stability, such as re-blading when necessary.

3.6.5 **Surface Water Resources**

Exploration activities will be conducted using BMPs such that sediments, cuttings, drilling fluids, or any other material or substance will be fully contained in sumps to ensure that these materials do not enter drainages.

Sumps will be excavated and managed to prevent overtopping and saturating the safety berms. MPM will monitor sumps regularly for seeps or other evidence of erosion and will direct drill crews to cease activity and notify supervisors if seepage is observed. MPM will ensure that sump evacuation proceeds for as long as drilling or other water-producing activities continue. If evacuation is not possible, drilling will be suspended as soon as water levels approach the sump capacity. No trash will be placed in the sumps.

Natural drainage patterns will not be altered. When drainages must be crossed by overland travel, best management practices, identified in the SWPPP, will be followed to minimize the surface erosion and sedimentation potential. Smaller surface drainage patterns that cross the established roadway footprint will be restored, and regrading will conform to the adjacent topography.

3.6.6 **Hazardous and Solid Wastes**

The operation will not generate or dispose of any hazardous waste on the exploration site. Petroleum products will be used on-site and are excluded as hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act section 101(14). Diesel will be transported to the site in a mobile fuel/lube truck but will not be stored on-site. Motor oil, lubricating grease and solvent in small quantities (one case each or less) would be maintained in a fully contained box on the drill rig for emergency use. If regulated materials (petroleum products) are spilled, measures will be taken under spill response guidelines to control the extent of the spill, and the appropriate agencies will be notified in accordance with the applicable federal and state regulations.
Solid waste will be collected at each drill site and stored in a covered container to prevent wildlife scavenging. Solid waste will be removed from the property and be disposed of at a suitable location.

Portable toilets will be supplied and located in the vicinity of drilling crews in the Newmont, Central and Dragonfly areas. The toilets will be evacuated and cleaned regularly by the contracted supplier for the duration of the drilling program.

3.6.7 Cultural Resources

A Class III baseline cultural survey was completed for the project in accordance with BLM requirements. Should resources be discovered that were not found in the cultural surveys, MPM will ensure that its employees and contractors understand that they may not knowingly disturb, alter, injure, or destroy any scientifically important paleontological remains or any historical or archaeological site, structure, building or object on federal lands. Any such discovery would be left intact pending a determination by the BLM.

3.6.8 Sensitive Species Protection

There are no animals or plants on the site that are listed as threatened or endangered under the federal Endangered Species Act or the California Endangered Species Act (CESA). However, the State designated the Joshua tree as a candidate species on September 22, 2020. Candidate species are protected under the CESA. The area of exploration drilling does not include high density stands of Joshua trees.

Exploration activities are limited to the prior disturbance footprint. Impacts to sensitive species of concern managed by the BLM and their habitats would be minimized through adherence to the environmental protection measures described in the EA and Decision, including:

- Flagging or stakes would be used as needed to assist with visual delineations where boundaries are unclear, such as in previously undisturbed areas.
- Special species of concern were inventoried along a 50-meter corridor on either side of the roadway.
- A qualified biological monitor would be present during road construction to advise slight route changes or timing changes to minimize the overall impacts to biological resources.
- Cactus, yucca, and other succulents would be managed and/or transplanted as necessary.
- Joshua trees will be avoided.

An assessment of the special status plants on the exploration site was undertaken by qualified botanists. Recommendations are contained in the report entitled: *Biological Resources Technical Report, Mojave Project Exploration Drilling, WRA, September 2020*. The recommendations for special status plants are incorporated into this PO as follows:

Plant Removal

Ground disturbing activities would be restricted to the footprint of prior exploration surface disturbance. Special status plants have been identified and mapped. A biological monitor will visit the construction route and identify candidates for avoidance and salvage. Where CRPR Rank 1 or 2 special-status plants cannot be avoided or salvaged, seed present should be collected.

No Western Joshua Trees (currently under evaluation by the California Fish and Game Commission for listing as Threatened) would be removed by roadway re-construction, which is limited to the prior surface disturbance footprint.

Revegetation

Regraded areas will be revegetated with a commercially available native erosion control seed mix with key species from surrounding native plant communities. The reclamation plan provides for monitoring and success determination based on performance standards. Contingency measures are provided if
the success criteria are not met (e.g., corrective actions including reseeding, invasive species removal, and/or substitution of different native species that may have a higher success rate).

Compensation

A habitat compensation plan may be developed in consultation with the BLM for activities that would impact special-status plants. The plan would follow guidelines from the BLM Compensatory Mitigation Instruction Memorandum (BLM 2018).

3.6.9 Special-Status Wildlife

Birds

For vegetation removal and ground disturbance that is conducted within the general nesting bird season (February 1 through August 31), pre-construction nesting bird surveys would be conducted within an appropriate radius of vegetation removal or ground disturbance by a qualified biologist within 14 days of the initiation of these activities to avoid disturbance to active nests, eggs, and/or young. Active nests of native birds found during the survey would be protected by a no-disturbance buffer until young from each nest fledge or the nest otherwise becomes inactive. The size of each buffer shall be determined by a qualified biologist dependent upon extant conditions and may require consultation with the CDFW and/or USFWS. Buffers are typically a minimum of 50 feet for non-special-status birds and may be larger for special-status or raptor species.

Bats

If grading and other ground-disturbing activities associated with road re-construction take place during the bat roosting season (April 15 – September 15), the biological monitor would conduct preconstruction surveys for active bat roosts no more than one week prior to any ground-disturbing activities. If active bat roosts are found, the biological monitor would establish an appropriate buffer around the roost based on the species in question and the type of work being performed in the vicinity. Construction personnel would be excluded from work in the buffer until the biologist has determined that the roost is no longer active.

Ground-dwelling species

A biological monitor would be present during grading for road re-construction. Working closely with the construction contractor, the biological monitor would conduct morning sweeps of active work areas to allow northern sagebrush lizards and other wildlife to escape to a safe distance outside of the work area.

During exploratory mining operations, open drill holes shall be covered at the end of the day to avoid entrapping wildlife. Trenches shall be dug with sloped ends to provide any wildlife with a means to escape on their own.

Prior to any grading or other ground-disturbing activity associated with road re-construction, a biological monitor will survey the construction area for American badger dens. If present, occupied badger dens would be flagged and ground-disturbing activities avoided within 50 feet of the occupied den, or badgers would be properly relocated. Maternity dens would be avoided during pup-rearing season (February 15 through July 1) or and a minimum 200-foot protection buffer established.

3.6.10 Public Safety

Signs will be posted at the beginning of the exploration roadway indicating that this is an active project and that no unauthorized personnel are allowed to enter the active exploration area.

3.6.11 Weed Abatement

Weeds (Russian thistle and Halogeton) were documented in prior biological surveys at two locations (in the Newmont and Central Targets) on the reclaimed roadway. These non-native and invasive weeds will be
removed prior to grading where they occur to control spread. Weed abatement will be undertaken as necessary within planned areas of grading and routes of overland travel. Abatement activities will focus on existing invasive species including, but not limited to: Halogeton, Russian thistle, red brome, cheat grass, and other species that are rated High or Moderate for negative ecological impact in the California Invasive Plant Database (Cal-IPC).

Use of weed-free materials will be employed during reclamation, and post reclamation monitoring will include weed management as needed. Available topsoil from the re-graded roadway will be salvaged for use in onsite revegetation, unless contaminated with non-native invasive species. Weed management would include mechanical methods; herbicides would be used only on the recommendation of a California Licensed Qualified Applicator in conjunction with a qualified revegetation specialist.

Precautions will be taken to not introduce weeds to the site, including inspecting vehicle tires and undercarriage for accumulation of mud or lodged weeds, monitoring materials brought to the site to avoid introduction of weeds, and implementation of control measures in the event weeds are identified in the operations area.

3.6.12 Wildland Fire Protection

MPM will comply with applicable state and federal fire laws and regulations and all reasonable measures will be taken to prevent and suppress fires in the operations area.

Project vehicles will carry fire extinguishers and a minimum of ten gallons of water during the months of May through September. Fire-fighting equipment will be kept at the drill sites (e.g., shovel, Pulaski, extinguisher(s), and a minimum ten gallons of water). Vehicle catalytic converters will be inspected and cleaned of all brush and grass debris.

Wildland fires would immediately be reported by calling 911. Information reported would include the location (latitude and longitude if possible), fuels involved, time started, who or what is near the fire, and the direction of fire spread. The BLM Ridgecrest Field Office would be notified with the same information after the initial call is completed.

4. RECLAMATION

While BLM regulations under 43 CFR § 3809 contain requirements for reclamation, for any mining-related activity exceeding one acre of surface disturbance, a reclamation plan is also required to be approved pursuant to the SMARA. Under a 1998 Memorandum of Understanding between the BLM and the California Department of Conservation, compliance with the SMARA is to be undertaken by the local California lead agency. Inyo County is the local lead agency and will process a reclamation plan for the project. MPM has coordinated the 43 CFR § 3809 and SMARA reclamation requirements such that this PO provides the same reclamation requirements as the reclamation plan submitted to Inyo County.

4.1 Reclamation Plan and Surface Treatment

The project is limited to exploration activities; no mining or processing of minerals is proposed. Plans for rock characterization and handling plans (including isolation and control of acid-forming, toxic and deleterious materials that may be related to mining) are therefore not necessary for project reclamation. Reclamation of the drill sites depicted in Figure 14 will generally involve drying and backfill of sumps, plugging of drill holes, recontouring, and revegetation.

A schematic of road reclamation is shown in Figure 18, “Typical Cross Section Exploration Road Reconstruction and Reclamation.” Fill slopes will be regraded to achieve the natural topography with fill slopes ranging from flat to approximately 1:1 with most fill slopes flatter than 1.2:1. Cut slopes will be filled against to recreate existing natural topography with fill slopes ranging from flat to approximately 1:1. Exploration trenches world be backfilled.
MPM will comply with BLM requirements for the to reclaim the area disturbed using site-specific habitat restoration actions, including, but not limited to: appropriate recontouring; revegetation using a site-specific seed mix and optimum timing; reclamation contingency measures; the replanting of salvaged plants; and the establishment of success criteria and monitoring at the earliest feasible time.

4.1.1 Public Safety Considerations

The southern tip of the Inyo Mountains supports a wide-range of recreational activities, including, but not limited to: dispersed vehicle camping; motor vehicle touring (four-wheel drive or dual-sport bikes); horseback riding; hunting; backpacking; hiking; climbing; historical investigations; and photography.

The disturbed lands will be returned to their previous land uses. The Claim Site is remote, with infrequent public access. There are no residual hazards expected from the site conditions created by this exploratory drilling program that do not already occur in the region.

Land Status

Within the CDCA, NLCS units are made up of BLM-administered lands with nationally significant ecological, cultural, and scientific values. These lands are managed to conserve, protect, and restore these values. Additional criteria used by the DRECP to select lands for inclusion in the NLCS include landscape intactness, scenic quality, and landscape linkages. In general, the DRECP emphasizes habitat connectivity and cultural-botanical locations.

Access

The claims Site is located on the eastern side of a remote area of the Inyo Mountains, accessible only by travel on foot or horseback or by unmaintained dirt roads and jeep trails along its boundaries. The exploration drill road begins from the terminus of the nearest open designated vehicle route. The exploration road is accessible via the designated route by high clearance vehicles and is used as a parking area and campsite by general recreationists, hikers, and hunters. Recreational use of the area beyond the terminus is restricted to foot and horseback travel only, and requires cross-country navigation, as there are no formal or use trails.

4.1.2 Soil

The exploration roadway alignment is generally covered in loose, unconsolidated material. Outcrops of Permian geo-marine sedimentary rocks, dominated by limestones with some sandstone, are apparent near ridgelines. Slopes are generally covered in colluvium from this sedimentary parent material. Alluvial material is present in drainage bottoms and soil development is present around vegetated areas, primarily around trees and larger shrubs near drainage bottoms. True soils, being a mixture of mineral material and organic material, are shallow, where present.

Native topsoil and road fill substrate from prior operations is to be used. Given the limited extent of the disturbance, resoiling methods will consist of replacing the available stockpiled that would be scraped from the surface into a berm along the grading path. Stockpiled growth media soils will be spread over the surfaces of the exploration roads, to a stable, uniform thickness.

4.1.3 Compaction

The exploration drilling roads will receive little use that would subject them to compaction, as compared to frequently traveled surfaces. Dozing in reclamation will loosen any compaction such that ripping, or diskig is likely to be unnecessary. Basic compaction will be done to provide stability of fill slopes. Surficial scarification may be implemented as determined necessary to meet the desired revegetation success. The revegetation design will consist of scarifying the regraded drill sites and drill roads as necessary to reduce areas of compaction to establish a suitable root zone for planting.
4.1.4 Revegetation

Revegetation will establish a self-sustaining vegetation cover that will, over time, control erosion, prevent off-site sedimentation, and attenuate visual contrasts where disturbed surfaces are visible from off-site locations. Use of native grasses and shrubs will assist in blending surfaces into the surrounding landscape.

Revegetation would use native species common to the region. The planned seed list is shown in Table 5, “Exploration Road Revegetation Seed List.”

<table>
<thead>
<tr>
<th>Common Name</th>
<th>PLS lbs/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shadscale saltbrush</td>
<td>2.00</td>
</tr>
<tr>
<td>Spiny hopsage</td>
<td>1.00</td>
</tr>
<tr>
<td>Rabbitbrush</td>
<td>0.25</td>
</tr>
<tr>
<td>Mormon tea</td>
<td>1.00</td>
</tr>
<tr>
<td>Winterfat</td>
<td>1.00</td>
</tr>
<tr>
<td>California Buckwheat</td>
<td>1.00</td>
</tr>
<tr>
<td>Galleta grass</td>
<td>1.00</td>
</tr>
<tr>
<td>Indian ricegrass</td>
<td>2.00</td>
</tr>
<tr>
<td>Needlegrass</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Total: 9.5 Pounds PLS per Acre

Notes: PLS = Pure Live Seed.

1 Minor species and/or quantity adjustment may be made based on test plot results or availability at the time of purchase.

Seeding will take place in the first fall after drilling road use has determined to be concluded, and when there is sufficient moisture and soil development to optimize survival and growth.

4.1.5 Wildlife Habitat

The exploration roadway is a limited footprint that would use previously disturbed surfaces. Revegetation would be an improvement, as the planned seed mix uses species native to the region, whereas prior efforts completed over 20 years ago introduced a different seed mix. Wildlife habitat should therefore be improved as the vegetative cover will be similar to surrounding habitats and will be self-sustaining.

4.1.6 Revegetation Protection

This area is not managed as grazing land. Planting will be implemented with seed using native species not commonly used as forage. No plant protection measures such as fencing and caging would be used.

4.1.7 Revegetation Baseline

Baseline studies will be conducted concurrent with exploration activities to document vegetative cover, density, and species richness.

4.1.8 Revegetation Success Criteria

Two years following planting, revegetation will be considered a success if the following success criteria are met:

- Density: 5 plants per 1- by 1-meter quadrat
- Cover: 5%
- Species richness: 2 species per 1- by 1-meter quadrat
These goals may be adjusted once baseline measurements are collected.

4.1.9 Monitoring and Maintenance

Success of revegetation at the site shall be judged based upon the effectiveness of the vegetation in controlling erosion and for consistency with the reclaimed site use. Comparisons shall be made until performance standards are met provided that, during the last two years, there has been no human intervention, including for example, irrigation, fertilizer, or weeding. Post-reclamation monitoring for successful revegetation will be conducted so that, at a minimum, an 80 percent confidence level is achieved.

4.2 Equipment Removal and Closure Activities

The following subsections describe those project components that will be removed or remain and their related reclamation activities.

4.2.1 Structure and Equipment Removal

The project will not result in the construction of permanent buildings. The project will use mobile equipment, which will be removed following completion of the exploratory drilling and reclamation activities.

4.2.2 Closure of Openings

Once it is determined that drill holes do not need re-entry they will be closed by backfilling and sealing with cement in accordance with California Water Code (California Water Well Standards [DWR Bulletins 74-81 and 74-90]) and Inyo County Environmental Health Services well permits. The closed drill holes will be covered with growth media and revegetated in conjunction with reclamation of other surfaces.

There are no portals, shafts, tunnels or other surface openings associated with this project that need to be protected from public entry. No water wells or monitoring wells are to be completed for this project.

4.3 Phased Reclamation

The drilling sites will be reclaimed concurrent with operations as each site is progressively completed. As drill roads will be used throughout the entire exploratory drilling program, concurrent road reclamation will not be feasible.

The entire exploration site will be returned to a condition for continued use as BLM-managed Limited Use lands after reclamation. Reclamation, including returning the slopes to pre-existing contours, will return the roadway to a condition that will not facilitate motorized vehicle access.

4.4 Reclamation Cost Estimate

A reclamation cost estimate (RCE) for this PO is provided as Appendix D, “Reclamation Cost Estimate.” The format of the estimate uses the financial assurance cost estimate (FACE) form established by the California State Mining and Geology Board and used throughout California where a reclamation plan is required under the SMARA. The methods and assumptions for calculating the reclamation costs are described in text accompanying the calculations and are based on third-party costs to reclaim the site, using annually published State of California Transportation Agency, Department of Transportation Division of Contraction Labor Surcharge and Equipment Rental Rates, and State of California Department of Industrial Relations labor rates. Equipment production rates will be estimated in accordance with the Caterpillar Performance Handbook. As required by both the BLM and SMARA requirements, third-party costs for all aspects of reclamation management and implementation are provided including earthwork, revegetation, equipment removal, post-reclamation maintenance, equipment mobilization and demobilization, and agency administrative management. The estimate will be reviewed annually per SMARA requirements.
FIGURES
APPENDICES
APPENDIX A
EXPLORATION PROJECT LIST OF CLAIMS
APPENDIX B
STORMWATER POLLUTION PREVENTION PLAN

MPM